Protective Role for the Disulfide Isomerase PDIA3 in Methamphetamine Neurotoxicity
نویسندگان
چکیده
منابع مشابه
Protective Role for the Disulfide Isomerase PDIA3 in Methamphetamine Neurotoxicity
Methamphetamine abuse continues to be a worldwide problem, damaging the individual user as well as society. Only minimal information exists on molecular changes in the brain that result from methamphetamine administered in patterns typical of human abusers. In order to investigate such changes, we examined the effect of methamphetamine on the transcriptional profile in brains of monkeys. Gene e...
متن کاملThe disulfide isomerase Grp58 is a protective factor against prion neurotoxicity.
Prion diseases are transmissible neurodegenerative disorders characterized by extensive neuronal apoptosis and accumulation of misfolded prion protein (PrP(SC)). Recent reports indicate that PrP(SC) induces neuronal apoptosis via activation of the endoplasmic reticulum (ER) stress pathway and activation of the ER resident caspase-12. Here, we investigate the relationship between prion replicati...
متن کاملProtein-disulfide isomerase-associated 3 (Pdia3) mediates the membrane response to 1,25-dihydroxyvitamin D3 in osteoblasts.
Protein-disulfide isomerase-associated 3 (Pdia3) is a multifunctional protein hypothesized to be a membrane receptor for 1,25(OH)(2)D(3). In intestinal epithelium and chondrocytes, 1,25(OH)(2)D(3) stimulates rapid membrane responses that are different from genomic effects via the vitamin D receptor (VDR). In this study, we show that 1,25(OH)(2)D(3) stimulates phospholipase A(2) (PLA(2))-depende...
متن کاملRole of microglia in methamphetamine-induced neurotoxicity.
Methamphetamine (Meth) is an addictive psychostimulant widely abused around the world. The chronic use of Meth produces neurotoxicity featured by dopaminergic terminal damage and microgliosis, resulting in serious neurological and behavioral consequences. Ample evidence indicate that Meth causes microglial activation and resultant secretion of pro-inflammatory molecules leading to neural injury...
متن کاملFunctional Role of the Disulfide Isomerase ERp57 in Axonal Regeneration
ERp57 (also known as grp58 and PDIA3) is a protein disulfide isomerase that catalyzes disulfide bonds formation of glycoproteins as part of the calnexin and calreticulin cycle. ERp57 is markedly upregulated in most common neurodegenerative diseases downstream of the endoplasmic reticulum (ER) stress response. Despite accumulating correlative evidence supporting a neuroprotective role of ERp57, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2012
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0038909